나는 임베딩 벡터를 이용한 검색 시스템을 사전 이해 없이 통으로 만들어본 적이 있다. 그때의 지식이 크게 변하지 않은 채로 시간이 지나면서, 최근 다시 임베딩 벡터 기반 검색 기술을 공부하던 중 의미 기반 검색(Semantic Search) 과 키워드 기반 검색(Keyword Search) 의 개념을 명확히 알게 되었다. 그리고 이 두 접근 방식을 비교하다 보니, Sparse Vector(희소 벡터) 라는 개념이 그 중심에 있다는 걸 알게 됐다. 이번 글에서는 Sparse Vector가 무엇이고, Dense Vector와 어떤 차이가 있으며, 임베딩 기반 검색에서 어떤 역할을 하는지를 정리해보려 한다. 거기다 이전 글이 Embedding에 사용되는 벡터가 dense만 있다는 듯이 사용해서 자세히 알아봤다..
카테고리 없음
2025. 11. 11. 10:59
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 인프런
- springboot
- JWT
- 오블완
- java
- AWS EC2
- EKS
- OpenAI
- ecs
- elasticsearch
- Log
- AOP
- S3
- 람다
- 후쿠오카
- serverless
- 티스토리챌린지
- CORS
- Spring
- docker
- lambda
- Redis
- cache
- GIT
- ChatGPT
- AWS
- terraform
- CloudFront
- 스프링부트
- Kotlin
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
글 보관함
